

Francisco

São

Rio

Exemplo de simulação de Impacto na cultura de Cebola sob Aspersão Convencional.

Na região próxima à Guanambi - BA

> Brasília - DF 2008

Agência Nacional de Águas Diretoria Colegiada

José Machado - Diretor-Presidente Benedito Braga Oscar Cordeiro Netto Bruno Paanoccheschi Dalvino Troccoli Franca

Para mais informações

ANA - Agência Nacional de Águas SAG - Superintendência de Apoio à Gestão de Recursos Hídricos Setor Policial Sul - Área 5 - Quadra 3 - Blocos B, L e M CEP70610-200 - Brasília - DF Tel: (61) 2109-5437 PABX (61)2109-5400 / 2109-5252 www.ana.gov.br

CBHSF - Secretaria Executiva. Av. Prof. Magalhães Neto, 1450 sala 1203, Pituba. Salvador - BA. Tel/fax (71)-3176-7150 / 3176-7151 www.saofrancisco.cbh.gov.br

Apoio

CBHSF

Comitê da Bacia Hidrográfica do Rio São Francisco

Ministério do Meio Ambiente

MECANISMOS E VALORES

Os mecanismos e valores de cobrança são aqueles definidos pela CTOC-CBHSF para as simulações da cobrança. A equação a seguir apresenta a estrutura básica dos mecanismos adotados:

Cobrança = Base de Cálculo x Preço Unitário x [Coeficientes]

Base de Cálculo - Componente dos mecanismos de cobrança que visa a quantificar o uso da água. São considerados como "tipos de uso" da água: captação, consumo e lançamento de efluentes.

Captação Geral

$$Valor_{cap} = Q_{cap} \times PPU_{cap} \times K_{cap} classe$$

Captação Irrigação

$$Valor_{cap} = (Q_{cap} \times PPU_{cap} \times K_{cap classe}) \times K_{t}$$

Consumo Geral

$$Valor_{cons} = (Q_{con} - Q_{lone}) \times PPU_{cons}$$

Consumo Criação Animal

$$Valor_{cons} = (Q_{cap} - Q_{lanc}) \times PPU_{cons} \times K_{t}$$

Consumo Irrigação

$$Valor_{cor} = (Q_{cor} \times K_{corr}) \times PPU_{corr} \times K_{corr}$$

Lançamento de efluentes

$\overline{\text{Valor}_{DRO}} = (Q_{lanc} \times C_{DRO}) \times PPU_{DRO}$

	Valor DBO — (Qlanç X CDBO) X 11 ODBO
Valor _{cap}	Pagamento anual pela captação de água
Valor _{cons}	Pagamento anual pelo consumo de água
Valor _{dBO}	Pagamento anual pelo lançamento de carga
\boldsymbol{Q}_{cap}	Vazão de captação
$\mathbf{Q}_{\text{lanç}}$	Vazão de lançamento
$C_{ exttt{DBO}}$	Concentração média anual de DBO (demanda bioquímica de oxigênio) lançada
PPU_{cap}	Preço Público Unitário para captação
PPU_cons	Preço Público Unitário para consumo
PPU_{DBO}	Preço Público Unitário para lançamento de carga
$K_{\text{cap classe}}$	Coeficiente em função da classe do rio

Coeficiente de boas práticas

Preço Unitário

TIPO DE USO	PPU	UNIDADE	VALOR R\$
Captação de Água Bruta	PPU _{cap}	m³	0,01
Consumo de Água Bruta	PPU _{cons}	m³	0,02
Lançamento de Carga Orgânica	PPU _{DBO}	m³	0,07

Coeficientes - Componente dos mecanismos que visa ajustar a cobrança a objetos específicos.

K _{cap class}	0,7 à 1,0
K _t	0,05

USUÁRIO SELECIONADO

Cultura: Cebola sob Aspersão Convencional

Localidade: Região próxima à Guanambi - BA

Demanda de água: 10.642,32 m³/ha

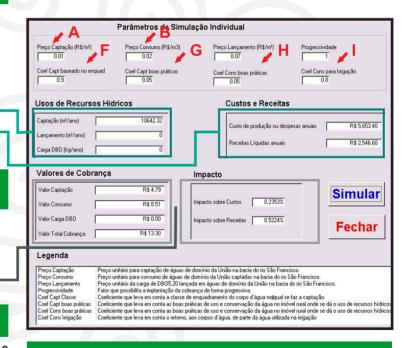
Custo: R\$ 5.653,40/ha Receita: R\$8.200,00/ha

RESULTADOS

Cobrança: R\$ 13,30/ha/ano

Impactos da cobrança

Sobre o custo de produção: 0,24%


Sobre a receita líquida: 0,52%

USO DE POUCA EXPRESSÃO

Na Bacia Hidrográfica do Rio São Francisco, as derivações e captações inferiores a 4,0 l/s são considerados de pouca expressão e, portanto, independentes de outorga e, conseqüentemente, os usuários isentos de Cobrança. Para a cultura de cebola na região de Guanambi/BA, esta isenção se aplicará, segundo esta estimativa, a propriedades com uma área irrigada inferior a 12 ha.

PASSOS PARA EXECUTAR A SIMULAÇÃO

- 1) Inserir os preços unitários ([A] R\$ 0,01/m³ e [B] R\$ $0,02/m^3$).
- 2) Inserir os coeficientes [F] $K_{cap \ classe}$ (0,9) e o [G, H] K_{t} (0,05), que é multiplicado pela somatória entre o Valor $_{cap}$ e o Valor $_{cons}$.
- 3) Inserir o coeficiente [I] K_{consumo} (0,8).
- 4) Inserir o uso de recursos hídricos (10.642,32 m³/ha).
- **5)** Inserir o custo (R\$5.653,40/ha) e receita líquida (R\$8.200,00/ha R\$5.653,40/ha = R\$2.546,60/ha).
- 6) Pressionar o botão "Simular".
- 7) Valores de Cobrança e Impactos simulados.

O simulador DIGICOB pode ser baixado no endereço:

www.saofrancisco.cbh.gov.br/DOCZ/DIGICOB-Simuladordecobranca-03Mar08.zip